- Home
- >
- All DAIKO products
- >
- CARBON STEELS
- >
- STRUCTURAL STEEL
STRUCTURAL STEEL
Application
Carbon-manganese (C-Mn) steels serve as the predominant structural steels extensively used across various applications in the engineering industry. Successful welding of C-Mn steel fabrications is generally achievable, provided the steel composition is known, necessary precautions are taken, and qualified procedures are adhered to. Weldability varies among C-Mn steels, with potential cracking mechanisms, including hydrogen cracking, solidification cracking, and reheat cracking, depending on specific circumstances. These consumables effectively resist such issues, emphasizing the importance of a meticulous welding procedure. While preheat and post-weld heat treatment (PWHT) may not be universally required, the actual specifications depend on the grade and thickness of the base material being welded. Attaining the required mechanical properties in a welded joint with C-Mn steels is achievable through the use of appropriate welding consumables. However, the intricate structural changes during the weld thermal cycle necessitate careful evaluation of properties such as heat-affected zone (HAZ) toughness and hardness.
Alloy Type
Consumables for welding mild and C-Mn steels of
340-510MPa tensile strength.
Microstructure
Predominantly ferrite.
Materials
Carbon and carbon-manganese steels encompass a wide range of structural and pressure-grade materials commonly used in construction, mechanical engineering, and industrial plant applications. Among the EN-standardized grades are non-alloy structural steels intended for general use, known for their good weldability and progressively higher mechanical strength. The “P” grades, on the other hand, are pressure vessel steels typically used in boilers and heat exchangers. Equivalent ASTM specifications cover a similar scope of applications and are widely adopted internationally for structural components, piping, and fittings exposed to pressure or high temperatures. Lastly, API specifications are typical of the oil & gas sector, particularly for the production of pipelines used in hydrocarbon transport, offering increasing levels of mechanical strength and specific performance requirements.
- EN W.Nr.: S 235 JR, S 235 J0, S 235 J2+N, S 275, S 275 J0, S 275 J2+N, S 355 JR, S 355 J0, S 355 J2+N, S 355 K2+N, P 235 GH, P 265 GH, P 295 GH
- ASTM: A36, A106 gr. A, A106 gr. B, A106 gr. C, A139, A210 gr. A1, A210 gr. C, A234 gr. WPB, A334 gr. 1, A216 gr. WCA, A216 gr. WCB, A216 gr. WCC
- API: A, B, X42, X52, X60
Products of the line STRUCTURAL STEEL
Product name | Process | AWS specifications | EN ISO specifications | |
DAIKOFLUX 470-W | SAW | - |
EN ISO 14174
S A AR 1 87 AC |
|
DAIKOFLUX 491-W | SAW | - |
EN ISO 14174
S A FB 1 55 AC H5 |
|
G-TECH 102 | SMAW |
AWS A5.1
E6013 |
EN ISO 2560-A
E 42 0 RR 12 |
|
DAIKOWT S2 | GTAW |
AWS A5.18
ER70S-2 |
EN ISO 636-A
W 42 3 W 2 T i |
|
DAIKOWT SG1 | GTAW |
AWS A5.18
ER70S-3 |
EN ISO 636-A
W 42 5 W 2 S i |
|
DAIKOWT SG2 HQ | GTAW |
AWS A5.18
ER70S-6 |
EN ISO 636-A
W 42 5 W 3 S i 1 |
|
DAIKOWT SG3 HQ | GTAW |
AWS A5.18
ER70S-6 |
EN ISO 636-A
W 46 5 W 4 S i 1 |
|
G-TECH 108 | SMAW |
AWS A5.1
E7018 |
EN ISO 2560-A
E 42 4 B 42 |
|
G-TECH 107B | SMAW |
AWS A5.1
E7018.1 H4 |
EN ISO 2560-A
E 42 4 B 42 H5 |
|
G-TECH 107HR | SMAW |
AWS A5.1
E7028 |
EN ISO 2560-A
E 42 2 B 83 |
|
G-TECH 107 | SMAW |
AWS A5.1
E7016 |
EN ISO 2560-A
E 42 3 B 12 |
|
G-TECH 107/S | SMAW |
AWS A5.1
E7016 |
EN ISO 2560-A
E 42 4 B 12 H10 |
|
G-TECH 102HR | SMAW |
AWS A5.1
E7024 |
EN ISO 2560-A
E 42 0 RR 73 |
|
G-TECH 103 | SMAW |
AWS A5.1
E6013 |
EN ISO 2560-A
E 42 A RR 12 |
|
G-TECH 101C | SMAW |
AWS A5.1
E6010 |
EN ISO 2560-A
E 38 3 C 21 |
|
G-TECH 102C | SMAW |
AWS A5.5
E7010-G |
EN ISO 2560-A
E 42 3 Z C 21 |
|
DAIKOMCW 107S | FCAW |
AWS A5.18
E70C-6M |
EN ISO 17632-A
T 42 4 M M 3 H5 |
|
DAIKOFCW 107B | FCAW |
AWS A5.36
E70T5 |
EN ISO 17632-A
T 46 4 B M 3 |
|
DAIKOMCW 107SP | FCAW |
AWS A5.18
E70C-6M H4 |
EN ISO 17632-A
T 46 4 M M 1 H5 |
|
DAIKOFCW 102R | FCAW |
AWS A5.36
E71T1 |
EN ISO 17632-A
T 46 4 P M 1 |
|
DAIKOMCW 107LF | FCAW |
AWS A5.18
E70C-6M |
EN ISO 17632-A
T 42 4 M M 3 H5 |
|
DAIKOFCW 102SP | FCAW |
AWS A5.20
E71 T-1 C/1M |
EN ISO 17632-A
T46 2 P M21/C 1 H5 |
|
DAIKOFCW 102S | FCAW |
AWS A5.20
E71T-1C/M |
EN ISO 17632-A
T 42 2 P C1/M21 1 H5 |
|
DAIKOFCW 107OP | FCAW |
AWS A5.20
E71T-GS |
EN ISO 17632-A
T 42 Z Z V N 1 |
|
DAIKOMCW 107 | FCAW |
AWS A5.36
E71T15-M21A8-CS1-H4 / E71T15-C1A6-CS1-H4 |
EN ISO 17632-A
T 46 6 M M21 1 H5 / T42 5 M C1 1 H5 |
|
DAIKOWM SG1 | GMAW |
AWS A5.18
ER70S-3 |
EN ISO 14341-A
G 42 4 M21/C1 2 Si1 |
|
DAIKOWM SG2 HQ | GMAW |
AWS A5.18
ER70S-6 |
EN ISO 14341-A
G 42 4 M21/C1 3 Si1 |
|
DAIKOWM S2 | GMAW |
AWS A5.18
ER70S-2 |
EN ISO 14341-A
G 42 3 M21/C1 2Ti |
|
DAIKOWM SG3 HQ | GMAW |
AWS A5.18
ER70S-6 |
EN ISO 14341-A
G 46 5/4 M21/C1 4 Si1 |
|
DAIKOWS S2 | SAW |
AWS A5.23
EM12K |
EN ISO 14171-A
S2 |
|
DAIKOWS S2Si | SAW |
AWS A5.23
EM12k |
EN ISO 14171-A
S2Si |
|
DAIKOWS S4 | SAW |
AWS A5.23
EH14 |
EN ISO 14171-A
S4 |
|
DAIKOWS S3Si | SAW |
AWS A5.23
EH12k |
EN ISO 14171-A
S3Si |
|
DAIKOFLUX 480-W | SAW | - |
EN ISO 14174
S A AB 1 67 AC H5 |
|
DAIKOFLUX 490-W | SAW | - |
EN ISO 14174
S A FB 1 55 AC H5 |
|
DAIKOFCW 71RC | FCAW |
AWS A5.20
E71T-1C T |
EN ISO 17632-A
46 2 P C1 1 H5 |